Search results

Search for "luminescence lifetime" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • three preferential directions 60° apart from another. The magnetic properties and the luminescence of the nanochains can be detected without the need of surface-dedicated instrumentation. The intermediate value of the observed luminescence lifetime of the deposits (132 µs) compared to that of the bulk
  • the deposits, which tentatively allows for the determination of their mass. Additionally, strong TbIII luminescence is detected. The luminescence lifetime measured for [Tb(hfac)3·2H2O]n@mica is smaller than that of bulk [Tb(hfac)3·2H2O]n but larger than that of a diluted solution of [Tb(hfac)3·2H2O]n
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

  • Jana Bomm,
  • Andreas Büchtemann,
  • Angela Fiore,
  • Liberato Manna,
  • James H. Nelson,
  • Diana Hill and
  • Wilfried G. J. H. M. van Sark

Beilstein J. Nanotechnol. 2010, 1, 94–100, doi:10.3762/bjnano.1.11

Graphical Abstract
  • . Keywords: CdSe; luminescence lifetime; nanocomposites; nanorods; quantum yield; Introduction Semiconductor nanoparticles have attracted great interest in recent years because of their fascinating optical properties. Their emission wavelength can be tuned directly by changing their size and shape as a
  • absorption and emission spectra are shown in Figure 10. The QE ranges from 52% to 39% for NRs in CTA for 0.5 wt % and 2.0 wt %, respectively. Luminescence lifetime measurements revealed that dispersion of the nanorods in either PLMA or CTA did not influence the lifetime (Figure 11). Mono-exponential fits
  • excitation wavelength of 395 nm with a Hamamatsu absolute PL quantum yield measurement system C9920-02, which uses an integrating sphere. Luminescence lifetime measurements were performed in a setup containing a FLS920 flourimeter (Edinburgh Instruments, Livingston, UK). A supercontinuum whitelight source
PDF
Album
Full Research Paper
Published 29 Nov 2010
Other Beilstein-Institut Open Science Activities